New Metabolites with Nematicidal and Antimicrobial Activities from the Ascomycete Lachnum papyraceum (Karst.) Karst[†]

IV. Structural Elucidation of Novel Isocoumarin Derivatives

MARC STADLER and HEIDRUN ANKE

University of Kaiserslautern, Department of Biotechnology, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern (Germany)

OLOV STERNER*

University of Lund, Department of Organic Chemistry 2, Chemical Center, P.O.B. 124, S-221 00 Lund (Sweden).

(Received for publication July 28, 1994)

The structures of four new biologically active halogenated dihydroiso coumarins isolated from submerged cultures of the ascomycete *Lachnum papyraceum* have been elucidated by spectroscopic methods. The compounds are structurally related to lachnumon and mycorrhizin A, which are also produced by the fungus.

In a previous investigation of the nematicidal metabolites produced by submerged cultures of the wood-inhabiting ascomycete *Lachnum papyraceum*, five active metabolites were isolated¹⁾, and characterised²⁾ as lachnumon (1), lachnumol A (2), mycorrhizin A (3), chloromycorrhizin A (4) and dechloromycorrhizin A (5). During an investigation of the influence of CaBr₂ on the biosynthesis of chlorinated secondary metabolites in *Lachnum papyraceum*, it was noted that the production of the mycorrhizins and lachnumon type antibiotics was strongly inhibited by the addition of 5 mM CaBr₂ in the

culture medium³⁾. Instead six dihydroisocoumarin (or isochroman-1-one) derivatives, 6,8-dihydroxy-3-methylisochroman-1-one (or 6-hydroxymellein⁴⁾) (6), 4-chloro-6,8-dihydroxy-3-methylisochroman-1-one (7), 4-bromo-6,8-dihydroxy-3-methylisochroman-1-one (9), 8-hydroxy-6-methoxy-3-methylisochroman-1-one (or 6-methoxymellein⁵⁾) (10), 4-chloro-8-hydroxy-6-methoxy-3-methylisochroman-1-one (11), and 4-chloro-5,6,8-trihydroxy-3-methylisochroman-1-one (12) could be isolated. While compounds 6 and 10 have been isolated from various sources and could be identified by comparing their

[†] Dedicated to Prof. Dr. H. ZAEHNER, University of Tübingen, on the occasion of his 65th birthday.

physical data with those previously reported^{4,5}, compounds 7, 9, 11, and 12 are new.

The structures of the dihydroisocoumarins 7, 9, 11 and 12 were elucidated by spectroscopic methods. The isotope patterns observed in the mass spectra of the compounds indicated that they are halogenated, and the elemental compositions given in Table 1 were suggested by high resolution mass spectroscopy. The three chlorinated compounds 7, 11 and 12 all lose CO₂ (according to high resolution mass spectroscopy) in the EI-MS, indicating that they are carboxyl acid derivatives. The brominated compound 9 loses Br very easily, and the mass spectrum of 9 differs in that respect from those of compounds 7, 11 and 12. Although the solubility of several of the compounds was limited in pure chloroform, a singlet at approximately 11 ppm in the ¹H NMR spectra of the compounds recorded in CDCl₃ suggested that all contain a hydrogen bonded hydroxyl proton. 2D correlation NMR spectroscopy revealed the short-range ¹H-¹H and ¹H-¹³C couplings, and the ¹H and ¹³C NMR data for compounds 7, 9, 11 and 12 are given in Tables 2 and 3. In the ¹H NMR spectra of compounds 7 and 11 two meta-coupled aromatic protons can be seen (the signals for the two aromatic protons of compound 9 are overlapping), and one gives a long-range ¹H-¹H coupling with the benzylic proton. The ¹³C chemical shifts of the corresponding benzylic carbons make this position most likely to be the one that is halogenated. Significant ¹H-¹³C long-range correlations observed for compounds 7 and 12 are shown in Fig. 1. The corresponding correlations were also observed for compounds 9 and 11, in addition to the correlation from 6-OCH₃ to C-6 for compound 11.

The absolute stereochemistry of (-)-6-hydroxymellein (6) and (-)-6-methoxymellein (10) isolated in this investigation is known⁶⁾, and it is reasonable to assume that C-3 in the other dihydroisocoumarins obtained here also has the R-configuration. However, the enantiomers of several mellein derivatives (e.g. 6-hydroxymellein⁷⁾) have also been isolated from natural sources. The assignment of the relative C-3/C-4 stereochemistry is based on comparisons with literature data. The J_{3-4} of similar dihydroisocoumarins (e.g. cis-4-hydroxymellein^{8,9)} and 4-hydroxyochratoxin A 13^{10}) with the C-3 methyl and C-4 hydroxy groups cis are approximately 2 Hz, while J_{3-4} in trans-4-hydroxymellein, isolated from Apiospora camptospora, has been reported to be 4 Hz⁸⁾. Both isomers of 4-hydroxy-5-methylmellein were isolated as phytotoxic metabolites of the fungus Valsa ceratosperma¹¹⁾, and the J_{3-4} is unexpectedly reported to be Fig. 1. Significant ¹H-¹³C long-range correlations observed with compounds 7 and 12.

Fig. 2. The most stable conformations of compound 7 (top) and compound 8 (bottom). See also Table 4.

1.5 Hz for the cis isomer and 1.4 Hz for the trans isomer. A larger difference was on the other hand noted for the ¹H chemical shift of the C-3 methyl groups of the two isomers, which is 1.63 ppm for the cis isomer and 1.28 ppm for the trans isomer (while it is 1.48 ppm for 6-hydroxymellein (6)). The values can be explained if the two isomers exist in different conformations¹¹, with the C-3 methyl group in an axial position and thereby shielded by the benzene ring in the trans isomer. Molecular mechanics calculations with the isomers 7 and 8 (compound 8 is hypothetical) confirm this (see the experimental part and Table 4), and the most stable conformations of compounds 7 and 8 are shown in Fig. 2. (The identical calculations with compound 12 and its hypothetical trans isomer gave very similar results, data not shown.) The J_{3-4} of the C-4 halogenated derivatives 7, 9, 11 and 12 are all close to 2 Hz (see Table 2) and the chemical shift for the C-3 methyl groups are between 1.5 and 1.6 ppm, suggesting that they all are *cis* isomers.

3-Methyldihydroisocoumarins with aromatic carbons chlorinated instead of C-4 have previously been isolated from *Sporormia affinis* and *Periconia macrospinosa*^{4,12)}. It has also been shown that such dihydroisocoumarins are polyketide metabolites and that they are precursors to the chlorinated cyclopentenes in *Periconia macro*-

	7	9	11	12
Appearance	Colourless crystals	Colourless crystals	Colourless crystals	Colourless crystals
MP (°C)	165~169	179~183	131~133	120~123
$[\alpha]_{D}^{22}$	-75° (c 1.0 in CHCl ₃)	-145° (c 2.0 in CHCl ₃)	-69° (c 0.1 in CHCl ₃)	-5.7° (c 0.4 in CHCl ₃)
Molecular formula	C ₁₀ H ₉ O ₄ Cl	$C_{10}H_9O_4Br$	$C_{11}H_{11}O_4Cl$	C ₁₀ H ₉ O ₅ Cl
HREI-MS (m/z)				
Observed	228.0173 M ⁺	271.9697 M ⁺	242.0353 M ⁺	244.0137 M ⁺
Calculated	228.0189 for	271.9685 for	242.0346 for	244.0138 for
	C ₁₀ H ₉ O ₄ ³⁵ Cl	$C_{10}H_9O_4^{79}Br$	C ₁₁ H ₁₁ O ₄ ³⁵ Cl	C ₁₀ H ₉ O ₅ ³⁵ Cl
EI-MS	230 (35% of 228), 228	274 (100% of 272), 272	244 (35% of 242),	246 (35% of 244), 244
	(61%), 193 (10%),	(18%), 193 (100%),	242 (75%), 207	(88%), 217 (35% of
	186 (35% of 184),	165 (68%), 150	(16%), 200 (35% of	215), 215 (19%), 202
	184 (100%), 165	(22%), 121 (23%)	198), 198 (100%), 179	(35% of 200), 200
	(72%), 150 (13%),		(70%), 164 (12%),	(57%), 171 (100%)
	121 (22%)		135 (19%)	
UV (MeOH)	220 (15,700), 269 (7,600),	231 (6,200), 272 (2,900),	219 (7,800), 268 (3,500),	219 (5,400), 268 (2,200),
$\lambda_{\max} \operatorname{nm}(\varepsilon)$	309 (4,700)	313 (2,000)	308 (2,100)	314 (1,600)
IR (KBr) cm^{-1}	3420, 3190, 1665, 1630, 1385, 1250, 1165, 1105	3420, 3200, 1665, 1630, 1380, 1250, 1165, 1110	3440, 1675, 1620, 1315, 1265, 1195, 1175, 1110	3400, 1660, 1610, 1380, 1240, 1120
TLC (Rf)	0.45 ^a , 0.43 ^b	0.43 ^a , 0.42 ^b	0.81 ^a , 0.52 ^b	$0.42^{a}, 0.52^{b}$

Table 1. Physico-chemical properties of compounds 7, 9, 11 and 12.

^a Merck, Kieselgel 60 F_{254} : Toluene - aceton - AcOH (70:30:1).

^b Merck, Kieselgel 60 F_{254} : Toluene - ethyl formiat - formic acid (10:5:3).

Table 2. ¹H NMR data of compounds 7, 9, 11, and 12. The spectra were recorded in CDCl₃ (compound 11) or CDCl₃: CD₃OD 20:1 at 500 MHz. The CDCl₃ signal (7.26 ppm) was used as a reference.

Proton:	7	9	11	12
3-Н	4.75 (dq; 2.0, 6.3)	4.42 (dq; 2.0, 6.3)	4.79 (dq; 2.0, 6.4)	4.52 (dq; 1.9, 6.6)
4-H	4.80 (dd; 0.5, 2.0)	4.94 (dd; 0.3, 2.0)	4.84 (dd; 0.5, 2.0)	4.78 (d; 1.9)
5-H	6.36 (dd; 0.5, 2.3)	6.31 (m)	6.45 (dd; 0.5, 2.3)	
7 - H	6.37 (d; 2.3)	6.31 (m)	6.48 (d; 2.3)	6.49 (s)
9-H3	1.57 (d; 6.3)	1.52 (d; 6.3)	1.61 (d; 6.4)	1.55 (d; 6.6)
6-OCH ₃			3.84 (s)	
8-OH		·	11.12 (s)	_

Table 3. ¹³C NMR data of compounds 7, 9, 11, and 12. The spectra were recorded in $CDCl_3$ (compound 11) or $CDCl_3:CD_3OD 20:1$ at 125 MHz, and the $CDCl_3$ signal (77.0 ppm) was used as a reference.

Carbon No.	7	9	11	12
C-1	168.6 (s)	168.7 (s)	168.4 (s)	168.6 (s)
C-3	76.0 (d)	75.8 (d)	76.0 (d)	77.5 (d)
C-4	57.0 (d)	49.2 (d)	56.9 (d)	64.6 (d)
C-4a	141.2 (s)	142.4 (s)	140.8 (s)	138.6 (s)
C-5	107.4 (d)	107.1 (d)	106.8 (d)	110.2 (s)
C-6	164.2^{a} (s)	164.6 ^a (s)	166.0 (s)	163.0 ^a (s)
C-7	103.8 (d)	103.7 (d)	101.7 (d)	104.8 (d)
C-8	164.5 ^a (s)	164.1ª (s)	164.8 (s)	158.2 ^a (s)
C-8a	97.5 (s)	98.9 (s)	99.6 (s)	101.7 (s)
C-9	17.8 (q)	19.6 (q)	17.9 (q)	16.1 (q)
OCH_3			55.8 (q)	

^a Interchangable.

Table 4. The steric energies (in kcal/mol) of the two most stable conformers of compound 7 and 8, obtained by molecular mechanics calculations. See also Fig. 2.

Compound	C-3 methyl:	Axial	Equatorial
7		1.98	4.54
8		4.20	1.70

spinosa¹³⁾. The co-isolation of the dihydroisocoumarins with the mycorrhizins (compounds $3 \sim 5$) supports the suggestion¹⁴⁾ that the the biosynthesis of the latter preceeds *via* dihydroisocoumarins.

Experimental

The compounds were isolated from the organic extract of a culture filtrate of the fungus Lachnum papyra $ceum^{3}$. UV spectra were obtained with a Perkin Elmer λ 16, and IR spectra with a Bruker IFS 48. The optical rotation was measured with a Perkin Elmer 1541 polarimeter with a cell path of 10 cm. EI-MS and HREI-MS spectra (direct inlet, EI at 70 eV) were recorded with a Jeol JMS-SX102 spectrometer, and NMR spectra (in CDCl₃ or CDCl₃ - CD₃OD, 20:1) were obtained with a Bruker ARX500 spectrometer. TLC experiments were performed on Merck Kieselgel 60 F254 precoated plates, and LC separations were performed on a Merck Lobar prepacked silica gel column. The MM calculations were made with the MacMimic program (version 2.9), obtained from InStar Software AB (Lund, Sweden), on a Macintosh Quadra 700. The torsion parameters for C (carbonyl)-C(sp 2)-C(sp 2)-O(sp 3) were not provided in the program, and were set to: V1 = 0.0; V2 = 15.0; V3 = 0.0.

Acknowledgments

Financial support from the Swedish Natural Science Research Council and Studienstiftung des deutschen Volkes is gratefully acknowledged.

References

- STADLER, M.; H. ANKE; W. R. ARENDHOLZ; F. HANSSKE, U. ANDERS, K. E. BERGQUIST & O. STERNER: Lachnumon and lachnumol, new metabolites with nematicidal and antimicrobial activities from the ascomycete *Lachnum papyraceum* (Karst.) Karst. I. Producing organism, fermentation, isolation and biological activities. J. Antibiotics 46: 961~967, 1993
- STADLER, M.; H. ANKE; K. E. BERGQUIST & O. STERNER: Lachnumon and lachnumol, new metabolites with nematicidal and antimicrobial activities from the ascomycete

Lachnum papyraceum (Karst.) Karst. II. Structural elucidation. J. Antibiotics 46: 968~971, 1993

- 3) STADLER, M.; H. ANKE & O. STERNER: Metabolites with nematicidal and antimicrobial activities from the ascomycete *Lachnum papyraceum* (Karst.) Karst. III. Production of novel isocoumarin derivatives, isolation, and biological activities. J. Antibiotics 48: 261 ~ 266, 1995
- MCGAHREN, W. J. & L. A. MITSCHER: Dihydroisocoumarins from a Sporormia fungus. J. Org. Chem. 33: 1577~1580, 1968.
- DUNN, A. W. & R. A. W. JOHNSTONE: Fungal metabolites part 7. Structures of C25 compounds from *Aspergillus variecolor*. J. Chem. Soc. Perkin Trans. I: 2113~2117, 1979
- ANTUS, S.; G. SNATZKE & I. STEINKE: Synthese und circulardichroismus von steroiden mit isochromanonchromophor. Justus Liebigs Ann. Chem: 2247~2261, 1983.
- VENKATASUBBAIAH, P. & W. S. CHILTON: Toxins produced by the dogwood anthracnose fungus *Discula* sp. J. Nat. Prod. 54: 1293~1297, 1991
- ALDRIDGE, D. C.; S. GALT, D. GILES & W. B. TURNER: Metabolites of *Lasiodiplodia theobromae*. J. Chem. Soc. (C): 1623~1627, 1971
- CAMARDA, L.; L. MERLINI & G. NASINI: Metabolites of Cercospora. Taiwapyrone, an α-pyrone of unusual structure from *Cercospora taiwanesis*. Phytochem. 15: 537~539, 1976
- HUTCHISON, R. D. & P. S. STEYN: The isolation and structure of 4-hydroxy-ochratoxin A and 7-carboxy-3,4dihydro-8-hydroxy-3-methylisocoumarin from *Penicillium viridicatum*. Tetrahedron Lett.: 4033~4036, 1971
- OKUNO, T.; S. OIKAWA, T. GOTO, K. SAWAI, H. SHIRAHAMA & T. MATSUMOTO: Structures and phytotoxicity of metabolites from *Valsa ceratosperma*. Agric. Biol. Chem. 50: 997~1001, 1986
- GILES, D. & W. B. TURNER: Chlorine-containing metabolites of *Periconia macrospinosa*. J. Org. Chem. (C): 2187~2189, 1969
- HOLKER, J. S. E. & K. YOUNG: Biosynthesis of metabolites of *Periconia macrospinosa* from [1-¹³C]-, [2-¹³C]-, and [1,2-¹³C]-acetate. J. Chem. Soc. Chem. Commun: 525~526, 1975
- 14) CHEXAL, K. K.; C. TAMM, J. CLARDY & K. HIROTSU: Gilmicolin and mycorrhizinol, two new metabolites of *Gilmaniella humicola* Barron. Helv. Chim. Acta 62: 1129~1142, 1979